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Abstract

In this paper, we present a stable hybrid scheme for viscous problems. The hybrid method combines the unstructured
finite volume method with high-order finite difference methods on complex geometries. The coupling procedure between
the two numerical methods is based on energy estimates and stable interface conditions are constructed. Numerical calcu-
lations show that the hybrid method is efficient and accurate.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

High-order finite difference methods (HOFDM) provide an efficient approach when high resolution is
essential in a calculation. It is also clear that the node-centered unstructured finite volume method (UFVM)
is widely used for problems with complex geometries and non-linear phenomena. In computational physics,
the computational domain is often for efficiency and mesh generation reasons divided into multiple blocks,
where either HOFDM or UFVM can be used. If a stable and accurate coupling at the block interfaces is
achieved we can construct a very flexible and efficient computational method.

Attempts to combine structured and unstructured mesh types have been considered before. For instance, in
[13] a method which uses both the finite difference method and the finite element method is developed. The
finite difference domain and the finite element domain are patched together using overlapping meshes. In
[5], the calculation of unsteady flow in Turbo-machinery was done using a mixture of quadrilateral and trian-
gular cells for added flexibility. In [9], a two-dimensional zonal interactive scheme for Euler equations was
developed for computing flows around complex geometries. Although many type of hybrid methods have been
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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developed to improve the accuracy and efficiency of calculations around complex geometries, very few deal
with the essential stability issue.

In [3,15,16,18,6], stable interface treatment between multiple domains for HOFDM were presented. The
technique is based on the so-called summation-by-parts (SBP) operators and impose the boundary and inter-
face conditions weakly, see [2]. The weak imposition of boundary and interface conditions is necessary for sta-
bility since it preserves the SBP character of the difference operators. In [3], the authors developed stable and
conservative interface and boundary conditions treatments of arbitrary spatial accuracy for the linear advec-
tion–diffusion equation. In [15], boundary and interface conditions for the constant coefficient Euler and
Navier–Stokes equations were developed. The interface conditions are stable and conservative even if the finite
difference operators and mesh sizes vary from domain to domain. The method is applied to multidimensional
linear problems in curvilinear coordinates in [16]. In [18], it was shown that the method is suitable for aeroa-
coustic sound generation and propagation while various versions of interface procedures for viscous problems
in one dimension were investigated in [6].

In a parallel development it was shown in [17,22,21] that the UFVM approximation of the first derivative
[17] and the Laplacian [22,21] is an SBP formulation. In a similar manner as for the HOFDM, it was also
shown that a correct weak imposition of boundary conditions lead to stability.

In [19], it was shown how to couple the UFVM and HOFDM in a stable way for hyperbolic problems. The
energy method and a modification of the dual mesh in the UFVM lead to stability. The present paper contin-
ues the study of stable interface treatment by considering hybrid schemes for viscous problems. We also add
the additional complexity of a curvilinear mesh in the HOFDM region. The technique derived in this paper
makes it straight forward to apply the hybrid technique to the full Navier–Stokes equation.

The rest of the paper is organized as follows. In the next section, we derive stable boundary conditions for
the continuous problem. Section 3 presents the two numerical methods on a single domain. In Section 4, we
derive the stable coupling procedure. In Section 5, numerical experiments are performed. Conclusions are
drawn in Section 6.

2. The continuous problem

Consider the model problem
ut þ aux þ buy ¼ eðuxx þ uyyÞ; x; y 2 X; t > 0; ð1aÞ
uðx; y; 0Þ ¼ f ðx; yÞ; x; y 2 X; ð1bÞ

auþ b
ou
on
¼ gðx; y; tÞ; x; y 2 oX; t > 0: ð1cÞ
The coefficients a, b and e are constants. In general, the coefficients a and b depend on x, y and t.
Let the inner product for real valued functions u; v 2 X be defined by ðu; vÞ ¼

R R
X uv dxdy and the corre-

sponding norm kuk2 ¼ ðu; uÞ. Applying the energy method to (1a) yields,
kuk2
t þ 2eðkuxk2 þ kuyk2Þ ¼ �

I
oX

�cu2 � 2eu
ou
on

� �
ds: ð2Þ
where
n ¼ ðdy;�dxÞ
ds

; ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2

p
; �c ¼ ða; bÞ � n; ou

on
¼ ðux; uyÞ � n:
Substituting the boundary conditions (1c) into (2) we obtain
kuk2
t þ 2eðkuxk2 þ kuyk2Þ ¼

I
oX
� �cþ 2a

b
e

� �
u2 þ 2e

b
ug

� �
ds

¼ �
I

oX

�cþ 2a
b

e

� �
u� e

b
1

�cþ 2a
b e

g

 !2

dsþ
I

oX

e
b

� �2
1

�cþ 2a
b e

 !
g2 ds: ð3Þ
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Remark. When the solution can be estimated in terms of all types of data, the problem is called strongly sta-
ble, see [7] for more details.

Remark. The estimate (13) is completely similar to the continuous estimate (3). Condition (14) is completely
similar to (4).
3.2. The finite difference method

For the finite difference approximations, the physical domain must be possible to smoothly transform to a
rectangular computational domain (see Fig. 2). We start by transforming Eq. (1a) to curvilinear form. Note
that ux ¼ nxun þ gxug and uy ¼ nyun þ gyug, where we have introduced the transformation x ¼ xðn; gÞ and
y ¼ yðn; gÞ and the metric relations,
Jnx ¼ yg; Jny ¼ �xg; Jgx ¼ �yn; Jgy ¼ xn; J ¼ xnyg � xgyn ¼ ðnxgy � nygxÞ
�1 6¼ 0:
For simplicity we also introduce the notations,
~a¼ aJnxþ bJny ; ~b¼ aJgxþ bJgy ; ~f ¼ Jðnxux þ nyuyÞ ¼ Jðru � rnÞ; ~g ¼ Jðgxuxþ gyuyÞ ¼ Jðru � rgÞ:
It follows that Jðaux þ buyÞ ¼ ð~auÞn þ ð~buÞg and Jðuxx þ uyyÞ ¼ ~f n þ ~gg since ~an þ ~bg ¼ 0. Eq. (1a) transforms
into
Jut þ ð~auÞn þ ð~buÞg ¼ eð~f n þ ~ggÞ: ð15Þ
For reasons that will become obvious later, we split the terms ð~auÞn and ð~buÞg in (15) as (see [14])
ð~auÞn ¼
1

2
½ð~auÞn þ ~aun þ ~anu�; ð~buÞg ¼

1

2
½ð~buÞg þ ~bug þ ~bgu�:
The difference operators in the n and g directions on the right subdomain are denoted by Dn ¼ ðP nÞ�1Qn � Ig

and Dg ¼ In � ðP gÞ�1Qg, respectively. Note that the operators ðP nÞ�1Qn and ðP gÞ�1Qg are SBP operators since
the matrices P n and P g are symmetric and positive definite and,
Qn þ ðQnÞ
T ¼ Bn ¼ diagð½�1; 0; . . . 0; 1�Þ;

Qg þ ðQgÞ
T ¼ Bg ¼ diagð½�1; 0; . . . 0; 1�Þ:

ð16Þ
In matrix formulation we have
~nx ¼ diagððnxÞiÞ; ~ny ¼ diagððnyÞiÞ; ~gx ¼ diagððgxÞiÞ; ~gy ¼ diagððgyÞiÞ; eA ¼ diagð~aiÞ;eB ¼ diagð~biÞ; eF ¼ diagð~f iÞ; eG ¼ diagð~giÞ; eJ ¼ diagðJ iÞ:
In the curvilinear coordinate system, the finite difference approximation of u at the grid point ðni; gjÞ is a vector
denoted uij. We organize the solution in the global vector u ¼ ½u11; . . . ; u1l; u21; . . . ; u2l; . . . ; un1; . . . ; unl�T. un, ug

are approximations of un, ug and are approximated using the high-order accurate SBP operators for the first
Fig. 2. (a) The physical domain and (b) the computational domain.
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derivative that were constructed in [3,10]. Moreover, on the boundary we define Dnu to be the approximation
of
ou
on

� �
i

¼ ½ðux; uyÞ � n�i ¼ ½ðnxun þ gxug; nyun þ gyugÞ � n�i

� ðð~nxDnuþ ~gxDguÞi; ð~nyDnuþ ~gyDguÞiÞ � ~ni ¼ ðDnuÞi; i 2 oX; ð17Þ
with
~ni ¼
ðdyi;�dxiÞ

dsi
¼
ððyn dnþ yg dgÞi;�ðxn dnþ xg dgÞiÞ

dsi
;

dsi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2

i þ dy2
i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxn dnþ xg dgÞ2i þ ðyn dnþ yg dgÞ2i

q
:

ð18Þ
By using the notation above, a semi-discrete approximation of (1a) can be written,
eJ ut þ
1

2
½DnðeAuÞ þ eADnuþ ðIn � IgÞeAnu� þ 1

2
½DgðeBuÞ þ eBDguþ ðIn � IgÞeBgu�

¼ eðDn
eF þ Dg

eGÞ þ ½ðP nÞ�1 � ðP gÞ�1�ðEBÞTC½eauB þ ~bðDnuÞB � g�: ð19Þ
Here EB is a projection matrix which maps the values on the computational domain to the outer boundary,
that is, uB ¼ EBu and ðDnuÞB ¼ EBðDnuÞ. The boundary conditions have been introduced by using the penalty
technique SAT, see [2,17,19].

The energy method leads to
uTðP n � P gÞeJ ut þ
1

2
½uTðQn � P gÞeAuþ uTeAðQn � P gÞuþ uTðP n � P gÞeAnu� þ 1

2
½uTðP n � QgÞeBu

þ uTeBðP n � QgÞuþ uTðP n � P gÞeBgu�
¼ euTðQn � P gÞeF þ euTðP n � QgÞeG þ uT

BC½~auB þ ~bðDnuÞB � g�: ð20Þ
Remark. Notice that ðP n � P gÞ~J is a norm if P n and P g are diagonal, see Lemma 1 in [16].

Now we can make use of the splitting technique to obtain,
1

2
½uTðP n � P gÞeAnuþ uTðP n � P gÞeBgu� ¼ 1

2
uTðP n � P gÞðeAn þ eBgÞu ¼ 0;
since eAn þ eBg ¼ diagðð~an þ ~bgÞiÞ ¼ 0. We also need,
1

2
½uTðQn � P gÞeAuþ uTeAðQn � P gÞu� ¼

1

2
uTðBn � P gÞeAu;

1

2
½uTðP n � QgÞeBuþ uTeBðP n � QgÞu� ¼

1

2
uTðP n � BgÞeBu:
The viscous terms becomes,
uTðQn � P gÞeF þ uTðP n � QgÞeG ¼ � ½ðDnuÞTðP n � P gÞeF þ ðDguÞTðP n � P gÞeG�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðDissÞ

þuTðBn � P gÞeF
þ uTðP n � BgÞeG: ð21Þ
As was shown above we have,
eF ¼ diagð~f Þ ¼ diagð½Jðuxnx þ uynyÞ�iÞ ¼ eJ ½ð~n2
x þ ~n2

yÞDnuþ ð~gx
~nx þ ~gy

~nyÞDgu�;eG ¼ diagð~gÞ ¼ diagð½Jðuxgx þ uygyÞ�iÞ ¼ eJ ½ð~nx~gx þ ~ny~gyÞDnuþ ð~g2
x þ ~g2

yÞDgu�:
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Remark. By inserting C ¼ �eSB
~b�1 and (28) into (27), we obtain an estimate that is completely similar to (3)

and (13). Note also that (28) is completely similar to (4).
4. Multiple domains and interface conditions

Without loss of generality, we consider a computational domain which consists of two subdomains. The
unknown on the left subdomain is denoted by u and on the right subdomain by v, respectively. The same tech-
nique described in the previous section is used here to discretize both u and v. The superscripts L and R are
added in order to identify the left and right subdomains.

Since the outer boundary treatment has been already discussed, we will only focus on the interface treat-
ment. The coupling of u and v as well as the first derivatives DL

1 u and DR
1 v at the interface will be treated

by using the various forms of the SAT technique.

4.1. The finite volume method

A semi-discrete approximation of (1) on the left part of the computational domain can be written,
ut þ aDL
x uþ bDL

y u ¼ e DL
x DL

x uþ DL
y DL

y u
� 	

þ P L

 ��1

EL
I


 �T
F L

1 ðuI � vIÞ þ P L

 ��1

EL
I


 �T
F L

2 DL
n u


 �
I

�
þ DR

n v

 �

I


þ ðP LÞ�1 DL

n


 �T
EL

I


 �T
F L

3 ðuI � vIÞ þ PenL
1 ; ð29Þ
where PenL
1 is the penalty term that imposes the outer boundary conditions weakly. The other three penalty

terms on the right-hand-side will be used to couple the left subdomain calculation to the right subdomain

calculation. Note that DL
n u


 �
I
þ DR

n v

 �

I
is small and proportional to the truncation error. uI and vI are vec-

tors which represent u and v (v is the discrete finite difference solution that will be presented below) on the

interface, respectively. EL
I is a projection matrix which maps the values on the left computational domain to

the interface, that is, uI ¼ EL
I u and DL

n u

 �

I
¼ EL

I DL
n u


 �
. F L

1 , F L
2 and F L

3 are penalty matrices that will be

determined below by stability requirements. DR
n v is an approximation of ov=on which will be derived in

the next section.
By multiplying (29) with uTP L we obtain,
d

dt
kuk2

P L þ 2e kDL
x uk2

P L þ kDL
y uk2

P L

� 	
¼ �uT

I KL
I uI þ 2euT

I SL
I DL

n u

 �

I
þ 2uT

I F L
1 ðuI � vIÞ

þ 2uT
I F L

2 DL
n u


 �
I
þ DR

n v

 �

I

� 
þ 2 DL

n u

 �T

I
F L

3 ðuI � vIÞ þ BTL: ð30Þ
where BTL collects the outer boundary terms (see Section 3.1) and
KL
I ¼ diag½ða; bÞ � ~nL

i dsL
i �; SL

I ¼ diagðdsL
i Þ; i 2 Interface:
4.2. The finite difference method

A semi-discrete approximation of (1) on the right subdomain can be written,
eJ vt þ
1

2
DR

n ðeAvÞ þ eADR
n vþ ðIn � IgÞeAnv

h i
þ 1

2
DR

g ðeBvÞ þ eBDR
g vþ ðIn � IgÞeBgv

h i
¼ eDR

n
eF þ eDR

g
eG þ P R

n


 ��1 � P R
g

� 	�1
� �

ER
I


 �T
F R

1 ðvI � uIÞ þ P R
n


 ��1 � P R
g

� 	�1
� �

ER
I


 �T
F R

2 DR
n v


 �
I

�
þ DL

n u

 �

I


þ P R

n


 ��1 � P R
g

� 	�1
� �

DR
n


 �T
ER

I


 �T
F R

3 ðvI � uIÞ þ PenR: ð31Þ
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SL
I ¼ SR

I ; F L
2 þ F R

2 þ eSL
I ¼ 0; ð37Þ

F L
3 ¼ F R

3 ; ð38Þ

holds. Note that conditions (36) and (37) are a subset of the stability conditions (34) and (35) while (38) is a
new condition. If (38) is used, we get F L

2 ¼ F L
3 ¼ F R

2 ¼ F R
3 ¼ �eSL

I =2 ¼ �eSR
I =2.
4.4. Realizing the stability conditions

The specific SBP operators that are based on diagonal norms are given in [10,20]. The standard second-,
fourth- and sixth-order diagonal norm are
dg � diag
1

2
; 1; 1; . . . ;

� �
; ð39Þ

dg � diag
17

48
;
59

48
;
43

48
;
49

48
; 1; 1; . . . ;

� �
; ð40Þ

dg � diag
13; 649

43; 200
;
12; 013

8640
;
2711

4320
;
5359

4320
;
7877

8640
;
43; 801

43; 200
; 1; 1; . . . ;

� �
; ð41Þ
respectively.
Recall that for i 2 Interface we have,
KL
I ¼ diag½ða; bÞ � ðdyi;�dxiÞ�; KR

I ¼ diag½pR
i dgða; bÞ � ððygÞi;�ðxgÞiÞ�; ð42Þ

SL
I ¼ diag

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2

i þ dy2
i

q� �
; SR

I ¼ diag pR
i dg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxgÞ2i þ ðygÞ

2
i

q� �
: ð43Þ
A sufficient condition for obtaining KL
I ¼ KR

I and SL
I ¼ SR

I at the interface is
dxi ¼ pR
i dgðxgÞi; dyi ¼ pR

i dgðygÞi; i 2 Interface: ð44Þ
Denote the discretization points at the interface by 0; 1; . . . ;N , where 0 is the start point and N is the end point.
Since the vertices of each old dual grid close to the interface consist of the center of the triangles and the mid-
point of the edge at the interface, we have
dxi ¼

x1�x0

2
i ¼ 0;

xN�xN�1

2
i ¼ N ;

xiþ1�xi�1

2
otherwise;

8><>: dyi ¼

y1�y0

2
i ¼ 0;

yN�yN�1

2
i ¼ N ;

yiþ1�yi�1

2
otherwise;

8><>: ð45Þ
When we use the second-order accurate finite difference method to compute the metric coefficients on the right
subdomain we get,
ðxgÞi ¼

x1�x0

dg i ¼ 0;
xN�xN�1

dg i ¼ N ;
xiþ1�xi�1

2dg otherwise;

8><>: ðygÞi ¼

y1�y0

dg i ¼ 0;
yN�yN�1

dg i ¼ N ;
yiþ1�yi�1

2dg otherwise:

8><>: ð46Þ
By multiplying (46) with the standard second order diagonal norm we exactly obtain (45) and consequently
(44) is satisfied automatically.

However, the relations KL
I ¼ KR

I and SL
I ¼ SR

I are not automatically satisfied when curvilinear interfaces or
high-order SBP operators are used. We need to modify the control volume for the UFVM to guarantee the
conditions (34) and (35). To do this, we must move the position of the vertex i 2 interface at the interface,
which is determined by (44). Relation (44) should be understood as follows: adjust the left-hand-side (that pro-
duces the dual grid) to the given value of the right-hand-side.

We take the following example and show how to deal with the interface for high-order SBP operators. Let
us choose a curved interface (see Fig. 3) of the form
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Fig. 3. The black ‘o’ represents the midpoints of the interface and the red ‘x’ represents the new modified dual grid points.
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Fig. 4. The control volume connected to point 3 at the interface: (a) the original control volume and (b) the modified control volume.
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x ¼ xð0; gÞ ¼ 0:3 sinð2pgÞ; y ¼ yð0; gÞ ¼ g; 0 6 g 6 1:
The interface is discretized using 11 points and each line segment has equal length. If we use a fourth-order
accurate SBP operator to approximate the first derivative in Eq. (44), the new modified dual grid points will
be located as in Fig. 3. Instead of the original control volumes (see Fig. 4), the new control volumes (see Fig. 4)
should be used in order to guarantee the stability of the hybrid scheme.

5. Numerical calculations

The model problem tested below is written
ut þ aux þ buy ¼ eðuxx þ uyyÞ þ F ; ð47Þ

with suitable initial data and boundary data. F is the forcing function. In the test we use a ¼ 1, b ¼ 1 and
e ¼ 0:1. In order to estimate the accuracy of the schemes, an exact solution u ¼ sinð2pðxþ y � 2tÞÞ has been
chosen. The initial data, boundary data and the forcing function F are adjusted to fit the exact solution.

To test the efficiency and accuracy of these schemes, we define the rate of convergence, q, on the compu-
tational domain as
q ¼ log10ðku� vð1Þk2=ku� vð2Þk2Þ
log10

ffiffiffiffiffiffiffiffi
N ð1Þ
p

=
ffiffiffiffiffiffiffiffi
N ð2Þ
p� 	 ;
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Fig. 5. (a) Unstructured mesh, 704 nodes and (b) convergence rate.

Table 1
Convergence rates of approximations to ut þ ux þ uy ¼ 0:1ðuxx þ uyyÞ on a single domain ½0; 0� � ½1; 1� by using the UFVM and HOFDMs

Points UFVM HOFDM (2nd) HOFDM (3rd) HOFDM (4th)

log10-Err q log10-Err q log10-Err q log10-Err q

9 · 9 �0.99 – �0.99 – �1.48 – – –
17 · 17 �1.57 2.10 �1.57 2.10 �2.30 2.97 �2.25 –
33 · 33 �2.17 2.06 �2.17 2.06 �3.16 2.98 �3.34 3.78
65 · 65 �2.76 2.03 �2.76 2.03 �4.04 3.01 �4.47 3.86
129 · 129 �3.36 2.02 �3.36 2.02 �4.94 3.01 �5.64 3.93
257 · 257 �3.97 2.00 �3.97 2.00 �5.83 2.99 �6.83 3.96

Cartesian meshes are used.
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where u is the exact solution. vð1Þ and vð2Þ are the corresponding numerical solutions on meshes with N ð1Þ and N ð2Þ

nodes (including boundary nodes), respectively. We use the classical fourth-order Runge–Kutta method for the
time integration. A small time-step is used to minimize the temporal error. We measure the error at t ¼ 1:0.

5.1. Single domains and basic accuracy

We start by studying the accuracy of the UFVM on unstructured triangulated meshes (see Fig. 5). The con-
vergence rates are presented in Fig. 5. Due to symmetry of the triangle meshes, second order accuracy is
obtained.

Table 1 shows the convergence rates for both UFVM and HOFDM on a Cartesian meshes. The nodes of
the Cartesian meshes (see Fig. 5) are refined from 81 to 66,049. The convergence rates for the schemes with
interior accuracy of order 2, 4, 6 and boundary accuracy of order 1, 2, 3 are 2, 3, 4th order as shown in
[23]. Note that the same error are obtained by using the UFVM and the second order HOFDM. This shows
that the UFVM and the second order HOFDM are identical schemes on Cartesian meshes. Other test, not
shown here, confirm that the correct convergence rate for the HOFDM on stretched and curvilinear meshes
is obtained.

5.2. Multiple domains

In this section, we will illustrate the stability and efficiency of the hybrid scheme on multiple domains. The
testing is processed as follows:

(1) Applying the UFVM on an unstructured mesh in all subdomains.
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(2) Using the UFVM on the same mesh in a subdomain and the HOFDM on structured mesh(es) in the
other subdomain(s).

(3) Adjusting the number of grid points in the subdomain until we obtain a similar L2-error in all
subdomains.

First we calculate on two subdomains with a linear interface at x ¼ 0 (see Fig. 6). Table 2 shows the con-
vergence rate of UFVM and second and fourth order accurate HOFDM. The convergence rate for the UFVM
is 2 on unstructured symmetrical meshes. The log10L2-error is �3.30 for the UFVM on the finest mesh with
50,138 points. We only need a mesh with 28,852 points for the hybrid method (UFVM + HOFDM (4th)) to
obtain the same error level.

Next, we test the hybrid method on two subdomains with a smooth curved interface (see Fig. 6). In the
result shown in Table 3, we see that in the fourth order case the hybrid scheme is efficient since only one fifth
of the nodes are required for the HOFDM. The error levels are almost same as with a linear interface. The
solution and the error are presented in Fig. 7. The wave propagates from left to the right via the curved inter-
face without reflection. We conclude that the curved interface does not introduce more error and reflections
compared with the linear interface.

Next we will test the hybrid schemes on a computational domain ½�1; 1� � ½�1; 1� with four subdomains
(see Fig. 8). On the subdomain ½�1; 0� � ½�1; 0� excluding an ellipse, the UFVM was used. On the three other
subdomains, the HOFDM was used. The finite difference and the finite volume solutions are co-located at the
interfaces y ¼ 0 and x ¼ 0. Table 4 shows the convergence rate by using the hybrid scheme. The solution and
error are shown in Fig. 9. The efficiency of the hybrid scheme with the fourth order HOFDM is clearly seen.
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Fig. 6. Hybrid mesh with two subdomains: (a) with a linear interface and (b) with a curved interface.

Table 2
Convergence rates of approximations to ut þ ux þ uy ¼ 0:1ðuxx þ uyyÞ on two subdomains with a linear interface

UFVM (whole domain) Hybrid (UFVM + HOFDM (2nd)) Hybrid (UFVM + HOFDM (4th))

Points log10-Err q Points log10-Err q Points log10-Err q

360 �1.09 – 292 (182 + 110) �1.09 – – – –
1425 �1.70 2.06 1124 (704 + 420) �1.69 2.05 977 (704 + 273) �1.73 –
3133 �2.07 2.07 2537 (1607 + 930) �2.07 2.16 2072 (1607 + 465) �2.07 2.06
5588 �2.32 2.06 4447 (2807 + 1640) �2.32 2.05 3545 (1807 + 738) �2.32 2.13
8779 �2.52 2.09 6907 (4357 + 2550) �2.52 2.08 5428 (4357 + 1071) �2.53 2.26
22,389 �2.94 2.07 17,619 (11,139 + 6480) �2.94 2.06 13,164 (11,139 + 1863) �2.93 2.09
50,138 �3.30 2.03 39,621 (25,101 + 14,520) �3.30 2.03 28,852 (25,101 + 3751) �3.30 2.15

UFVM is used on the left domain and HOFDM is used on the right domain.
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Table 3
Convergence rates of approximations to ut þ ux þ uy ¼ 0:1ðuxx þ uyyÞ on two subdomains with a curvilinear interface

UFVM Hybrid (UFVM + HOFDM (2nd)) Hybrid (UFVM + HOFDM (4th))

Points log10-Err q Points log10-Err q Points log10-Err q

360 �1.09 – 271 (160 + 110) �1.00 – – – –
1425 �1.70 2.06 1017 (597 + 420) �1.62 2.16 870 (597 + 273) �1.64 –
3133 �2.07 2.07 2236 (1306 + 930) �1.98 2.14 1771 (1306 + 465) �1.99 2.26
5588 �2.32 2.06 3942 (2302 + 1640) �2.24 2.10 3040 (2302 + 738) �2.26 2.26
8779 �2.52 2.09 6217 (3667 + 2550) �2.43 1.87 4738 (3667 + 1071) �2.44 1.95
22,380 �2.94 2.07 15,709 (9229 + 6480) �2.86 2.13 11,092 (9229 + 1863) �2.85 2.18
50,138 �3.30 2.03 35,226 (20,706 + 14,520) �3.21 2.03 24,457 (20,706 + 3751) �3.22 2.19

UFVM is used on the left domain and HOFDM is used on the right domain.
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Table 4
Convergence rates of approximations to ut þ ux þ uy ¼ 0:1ðuxx þ uyyÞ on four subdomains

UFVM (whole domain) Hybrid (UFVM + HOFDM (2nd)) Hybrid (UFVM + HOFDM (4th))

Points log10-
Err

q Points log10-
Err

q Points log10-
Err

q

733 �1.09 – 550 (187 + 121 + 121 + 121) �1.11 – – – –
2809 �1.70 2.09 2020 (697 + 441 + 441 + 441) �1.71 2.14 1412 (697 + 273 + 273 + 169) �1.75 –
6389 �2.07 2.07 4451 (1568 + 961 + 961 + 961) �2.08 2.15 2723 (1568 + 465 + 465 + 225) �2.09 2.43
11,205 �2.32 2.05 7826 (2783 + 1681 + 1681 + 1681) �2.34 2.07 4538 (2738 + 738 + 738 + 324) �2.35 2.22
17,424 �2.52 2.08 12,156 (4353 + 2601 + 2601 + 2601) �2.54 2.16 6936 (4353 + 1071 + 1071 + 441) �2.56 2.43
44,447 �2.94 2.06 30,721 (11,038 + 6561 + 6561 + 6561) �2.96 2.07 15,285

(11,030 + 1863 + 1863 + 529)
�2.96 2.21

99,923 �3.30 2.04 68,405
(24,482 + 14,641 + 14,641 + 14,641)

�3.32 2.07 32,945
(24,482 + 3751 + 3751 + 961)

�3.32 2.27
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T ¼ 1:0 and (b) error at T ¼ 1:0.
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Another example illustrate the reflexion of error from the interfaces between multi-domains. The vortex is
introduced into the computational domain ½�1; 1� � ½�1; 1� with four subdomains by using the analytic
solution
uðx; y; tÞ ¼ j expð�hððx� c1t þ b1Þ2 þ ðy � c2t þ b2Þ2ÞÞ;

as boundary and initial data (see Fig. 8). In the test we used j ¼ 0:5, h ¼ 50, c1 ¼ 1, b1 ¼ 0:5, c2 ¼ 1 and
c2 ¼ 0:5. Between t ¼ 0:3 and 0.7 the vortex propagates close to the interfaces y ¼ 0 and x ¼ 0. No problems
could be detected at the interfaces and the error/reflexion is very small (see Fig. 10).

5.3. An application to a non-linear problem

As an example of a non-linear problem we consider the two-dimensional viscous Burgers’ equation
ut þ
u2

2

� �
x

þ uy ¼ euxx; 0 6 x; y 6 1;

uðx; y; 0Þ ¼ 1:5� 2x;

uð0; y; tÞ ¼ 1:5; uð1; y; tÞ ¼ �0:5; uðx; 0; tÞ ¼ 1:5� 2x:

ð48Þ
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We have used e ¼ 0:01, 5647 grid points on the left unstructured domain and 81� 41 grid points on the right
structured domain. The result is shown in Fig. 11. We find that the interface does not destroy the shape of
shock. The shock smoothly propagates through the interface.

5.4. Application to heat distribution around rods

Finally, we will exemplify our technique by computing the steady heat distribution around a set of rods.
Consider the problem,
Fig. 11
HOFD
T t þ aT x þ bT y ¼ eðT xx þ T yyÞ; �1 6 x; y 6 1; t > 0; ð49Þ

with a initial condition T ¼ T1, and the boundary conditions
T ¼ T b; ða; bÞ � n̂ < 0;
oT
on̂
¼ 0; ða; bÞ � n̂ P 0;
at the far-field boundary. n̂ is the unit outward pointing normal. At the ith rod we specify the temperature
T ¼ T i. For the temperatures we used T b ¼ T1 ¼ 1, T 1 ¼ 2:0, T 2 ¼ 0:1, T 3 ¼ 1:5 and T 4 ¼ 0:5. In our test,
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